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Abstract
The phase transition properties of a ferroelectric superlattice described by the
Ising model in a transverse field have been investigated using the effective-field
theory with a probability distribution technique that accounts for the self-spin
correlation functions. An independent interface plane has been assumed and
the parameters that imitate BaTiO3/SrTiO3 structure have been used in our
calculation. The Curie temperature, polarization, and dielectric constant have
been obtained. The most striking feature is that the dielectric constant presents
a maximum at room temperature. This kind of feature has been observed in a
recent experimental measurement.

1. Introduction

During the past decade, there has been considerable interest in the study of ferroelectric films
because they have received great attention in the research community and electronics industry
[1–3]. Barium titanate BaTiO3 is one of the most intensively investigated ferroelectrics
since it was discovered in the 1940s [4]. Owing to its excellent dielectric, pyroelectric,
and thermoelectric properties, BaTiO3 has been widely used in the electronics industry in
applications in capacitors, thermocouples, transducers, sensors, actuators [5, 6], etc. In recent
years, with the modification of adding strontium, the (Ba, Sr)TiO3 system for high-density
memory has become one of the central focuses of ferroelectric film research and development
activities, and the leading candidate for replacing SiO2 in fabricating the new generation:
extremely high-density DRAMs [7–9].

Ferroelectric superlattices have attracted significant attention recently because of a wide
array of fascinating properties. The study of a magnetic superlattice that consists of two
or more ferromagnets with different bulk properties has been motivated by the idea that the
properties of the superlattice can be significantly different from those of its constituents. A
detailed review of the properties of magnetic multilayers and superlattices has appeared [10].

Possibly because of the great difficulty of growing well characterized samples, few
experimental studies of ferroelectric superlattices have been published, and those only in
recent years. (BaTiO3)2/(SrTiO3)2 superlattices [11] and (BaTiO3)5/(SrTiO3)5 superlattices
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[12] have been successfully prepared by molecular beam epitaxy. Dielectric measurements for
BaTiO3/SrTiO3 superlattices have been carried out on a sample prepared by the pulsed laser
deposition technique [13, 14]. Tabata et al [14] have shown that the dielectric properties of
these superlattices exhibit considerably different behaviours from those of BaTiO3 and SrTiO3

single-phase films. The formation of dielectric and ferroelectric superlattices constitutes
a promising approach for creating new super-ferroelectric materials and for study of the
mechanism giving rise to ferroelectricity. A superlattice of PbZrO3/PbTiO3 has been fabricated
by multi-ion-beam sputtering and its dielectric constant was obtained [15]. On the other hand,
only a small amount of exploratory theoretical work has appeared [16–19]. Their starting point
is the Landau free energy. Under the mean-field approximation, the dielectric properties of the
same system have been studied [20–22]. The ferroelectric superlattice described by the Ising
model in a transverse field has been studied recently using the effective-field theory [23–29].

Our aim in this paper is to extend previous work to study the properties of ferro-
electric/paraelectric (FE/PE) superlattices. The system is described by the Ising model in
a transverse field within the framework of the effective-field theory [30]. This technique
is believed to give more exact results than the standard mean-field approximation. An
independent interface plane has been assumed and parameters that imitate the BaTiO3/SrTiO3

structure have been used in our calculation. In the following section, we introduce the model
and derive the equations that determine the plane longitudinal polarizations and the critical
temperature of the superlattice as functions of temperature, exchange interactions, transverse
field, and superlattice thickness. The phase diagrams, the polarizations, and the susceptibilities
of the superlattice are discussed in section 3. Brief conclusions are given in section 4.

2. Model and formulation

We consider a superlattice consisting of two different ferroelectric materials, A and B, stacked
alternately. For simplicity, we restrict our attention to the case of the simple cubic structure.
The periodic condition suggests that we only have to consider one unit cell. A model of
(FE)4/(PE)4 is depicted in figure 1, from which we can see that three of the four ferroelectric
planes show bulk properties, i.e., with bulk exchange strength and transverse field, while one
plane is an interface plane. Similarly, the four paraelectric planes consist of three planes with
bulk paraelectric properties together with one interface plane. This model is different from the
one used in the previous calculations [24, 26–29], which did not assume a separate interface
plane between the two media. The existence of interface planes is intrinsic for perovskite
ferroelectric superlattices [14]. The number of atomic planes in material A (B) is La (Lb) and
the thickness of the cell is L = La + Lb. The Hamiltonian of this system is given by

H = −
∑
(i,j)

Jij σ
z
i σ

z
j −

∑
i

�iσ
x
i (1)

where σ zi and σxi denote the z- and x-components of a quantum spin �σi of magnitude σ = 1/2
at site i. We consider only nearest-neighbour exchange, with Jij = Jaa for both spins in
ferroelectric planes, Jij = Jbb for both spins in paraelectric planes, and JI for both spins in
the interface planes and across the interface–ferroelectric or interface–paraelectric planes. We
assume that�i = �A in the ferroelectric planes,�i = �B for a site in the paraelectric planes,
and �i = �I for the interface planes. The method that we use is the effective-field theory,
described in [30, 31], which employs the probability distribution technique to account for the
single-site spin correlations. Following this procedure, we find that

mi,z = 〈〈Siz〉〉 =
〈
F

(∑
j

Jij Sjz,�i

)〉
(2)
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Figure 1. A schematic representation of a superlattice with four planes of ferroelectrics and four
planes of paraelectrics.

where mi,z is the longitudinal polarization of the ith site. In the mean-field approximation,
we would simply replace these spin operators by their thermal values mn,z (the longitudinal
polarizations). However, it is at this point that a substantial improvement to the theory is
made within the effective-field theory; we note that the spin operators have a finite set of basis
states, so each of the averages over the function F can be expressed as an average over a
finite polynomial of spin operators belonging to the neighbouring spins. The details of the
calculation can be found in [30, 31]. This leads to the plane longitudinal polarizations:

mn,z = 1

2N+2N0

N∑
i1=0

N0∑
i2=0

N0∑
i3=0

CNi1 C
N0
i2
C
N0
i3
(1 − 2mn,z)

i1(1 + 2mn,z)
N−i1

× (1 − 2mn−1,z)
i2(1 + 2mn−1,z)

N0−i2(1 − 2mn+1,z)
i3(1 + 2mn+1,z)

N0−i3

× F [yn,�n] (3)

where

yn = 1

2

[
Jn,n(N − 2i1) + Jn,n−1(N0 − 2i2) + Jn,n+1(N0 − 2i3)

]
(4)

and

F(y,�) = 1

2

y

(y2 +�2)1/2
tanh

[
1

2
β(y2 +�2)1/2

]
. (5)

We note that m1,z (mL,z) is function of m1,z (mL,z), m2,z (mL−1,z), and mL,z (m1,z). N and N0

are the numbers of nearest neighbours in the plane and between adjacent planes respectively
(N = 4 and N0 = 1 in the case of a simple cubic lattice), ClK = l!/[k!(l − k)!], and Ji,j in
the definition of yn stands for one of the three exchange interactions (Jaa, Jbb, JI) depending
on where the spin pair is located. �n stands for one of the three field strengths (�A, �B, �I)
depending on where the spin is located. The periodic condition for the superlattice has to be
satisfied, namely m0,z = mL,z and mL+1,z = m1,z.

We have then obtained the self-consistent equations for the polarizations (equation (3)) that
can be solved directly by numerical iteration. No further algebraic manipulation is necessary.
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This is the advantage of introducing the probability distribution technique. The same equations
hold for any arbitrary structure and, therefore, results for different structures can be obtained
without carrying out the detailed algebra encountered when employing other techniques.

As we are interested in the calculation of the longitudinal ordering near the transition
temperature, the usual argument that the plane longitudinal polarization mn,z tends to zero as
the temperature approaches its critical value allows us to consider only terms linear in mn,z
on approaching a critical temperature. Consequently, all terms of order higher than linear in
equation (3) can be neglected. This leads to the calculation of the Curie temperature of the
superlattice; all details of the formalism that we have used can be found in reference [26].

3. Results and discussion

In this paper, we denote respectively by σb,z(A), T bc (A), χb,z(A) the bulk longitudinal
polarization, the bulk critical temperature and the bulk longitudinal susceptibility of a uniform
lattice of material A which depend on �A and Jaa. σb,z(B) and χb,z(B) represent respectively
the bulk longitudinal polarization and the bulk critical susceptibility of a uniform lattice of
material B which depend on �B and Jbb.

The values of the parameters are chosen as Jaa = 264 K, �A = 0.01 K for ferroelectric
planes. These produce a bulk Curie temperature of 334.84 K. Jbb = 24 K, �B = 87 K.
JI = √

JaaJbb and �I = √
�A�B are defined as the exchange interaction and the transverse

field in the interface planes. These parameters are chosen from references [22, 32].

3.1. Phase diagrams

The period dependence of the Curie temperature of the superlattice is shown in figure 2.
The plane number n in the figure has different meanings for different curves. For curve a it
stands for either the total number of ferroelectric planes or that of paraelectric planes, as the
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Figure 2. The period dependence of the Curie temperature Tc (K). The number of planes n stands
for either the total number of ferroelectric planes or that of paraelectric planes. Curve a is for
a superlattice of (FE)n/(PE)n, curve b is for a superlattice of (FE)n/(PE)2, and curve c is for a
superlattice of (FE)1/(PE)n.
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Figure 3. (a) Profiles of the polarization at room temperature for the superlattice (FE)5/(PE)5. The
dashed and dotted horizontal lines correspond respectively to the bulk polarizations of materials
A and B for the same parameters. (b) Profiles of the polarization at room temperature for the
superlattice (FE)40/(PE)40. The dashed and dotted horizontal lines correspond respectively to the
bulk polarizations of materials A and B for the same parameters.

curve represents the Curie temperature of a superlattice with equal thickness of the planes,
i.e., (FE)n/(PE)n. Curve b stands for the Curie temperature of a superlattice (FE)n/(PE)2,
where n is the total number of ferroelectric planes. From these two curves we can see that
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Figure 4. (a) Profiles of the susceptibility at room temperature for the superlattice (FE)5/(PE)5.
The dashed and dotted horizontal lines correspond respectively to the bulk susceptibilities of
materials A and B for the same parameters. (b) Profiles of the susceptibility at room temperature for
the superlattice (FE)8/(PE)8. The dashed and dotted horizontal lines correspond respectively to the
bulk susceptibilities of materials A and B for the same parameters. (c) Profiles of the susceptibility
at room temperature for the superlattice (FE)40/(PE)40. The dashed and dotted horizontal lines
correspond respectively to the bulk susceptibilities of materials A and B for the same parameters.

the Curie temperature increases with increasing number of ferroelectric planes and approaches
the corresponding bulk ferroelectric Curie temperature when the period of the superlattice
increases. The calculation has also been done for the (FE)n/(PE)1 superlattice and the results
coincide with curve a. It is obvious that the Curie temperature depends upon the number of
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Figure 4. (Continued)

ferroelectric planes very strongly, and that the paraelectric plane plays a relatively weak role
in the behaviour of the Curie temperature. To confirm this, we draw curve c, which represents
the Curie temperature of the superlattice (FE)1/(PE)n. Here the number of ferroelectric planes
is fixed to one, so the number of planes n in the figure is the number of planes of paraelectrics.
From this curve we find that the Curie temperature does not change with the thickness of the
paraelectric planes except for the superlattice with one or two paraelectric planes.

3.2. Polarizations

The profiles of the polarization at room temperature are shown in figure 3. The positions of the
interface planes are marked by arrows. The dashed and dotted horizontal lines correspond
respectively to the bulk polarizations of materials A and B for the same parameters. In
figure 3(a) we show the profile of (FE)5/(PE)5. The polarization in the ferroelectric plane
is reduced when compared with its bulk value, because the interface plane has a relative
weak ferroelectricity. On the paraelectric side the polarization is virtually zero except at the
interface plane. In this paraelectric plane the polarization is very weak and is induced by
the interface plane. When we increase the period of the superlattice, as shown in figure 3(b)
for a (FE)40/(PE)40 superlattice, the polarization on the ferroelectric side is the same as its
bulk value at most sites, and is zero at sites away from the interface planes on the paraelectric
side. However, around the interface plane, the polarization of the ferroelectric side is still
much reduced, and is the same as in the case of a superlattice with a small period. The weak
polarization of the interface plane and that of the nearest neighbours from either side are almost
unchanged by the variation of the period.

3.3. Susceptibilities

The magnetic properties are important in practice and, in particular, the longitudinal
susceptibilities are interesting physical quantities which govern the characteristics of the
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changes of the polarizations with the fields and can indicate phase transition properties,
particularly the critical temperature. The phase transition is usually indicated by abnormal
behaviour of the longitudinal susceptibility at the critical temperature. In order to obtain
the longitudinal susceptibility, we apply a uniform longitudinal magnetic field h across the
superlattice, which adds to the Hamiltonian (1) a term

H1 = −h
L∑
i=1

σi,z (6)

describing the interaction of the longitudinal polarization with the magnetic field h. In order
to calculate the magnetic longitudinal susceptibility, we apply the formalism of section 2.
Equation (3) continues to apply, but the parameter yn is replaced by yn + h. The longitudinal
susceptibility of the nth plane is given by

χnz = ∂mn,z

∂h

∣∣∣∣
h=0

. (7)

The details of the calculations of the plane longitudinal susceptibilities are given in the
appendix. To evaluate the longitudinal susceptibility of the superlattice, we follow the
formalism of Wang et al [33]. As each plane can be treated as a capacitor, the capacitance of
the superlattice is the sum of the capacitances of each of the planes connected in series. The
total reciprocal permittivity is the sum of the reciprocal permittivities at each of the planes.
Thus the total susceptibility (the superlattice longitudinal susceptibility) χz is determined from

(1 + χz)
−1 = 1

L

L∑
n=1

(1 + χnz)
−1 (8)

where L is the thickness of the unit cell.
The profiles of the susceptibility at room temperature are shown in figures 4(a), 4(b)

and 4(c) respectively for (FE)5/(PE)5, (FE)8/(PE)8, and (FE)40/(PE)40. The dashed and
dotted horizontal lines correspond to the bulk susceptibilities of materials A and B for the
same parameters. The positions of the interface plane are indicated by arrows. The striking
common feature is that the maximum value of the susceptibility appears at the plane on the
ferroelectric side. For the (FE)5/(PE)5 superlattice in the ferroelectric phase, the susceptibility
increases, passes through a maximum and decreases to reach the susceptibility in the interface
(see figure 4(a)). This result is different from those published in reference [22], obtained using
the mean-field approximation which is believed to give less exact results than ours obtained
using the effective-field theory. For the two superlattices (FE)8/(PE)8 and (FE)40/(PE)40

(figures 4(b), 4(c)), in the ferroelectric phase, the susceptibility exhibits two maxima and
tends asymptotically to χb(A) away from the interface plane for the case (FE)40/(PE)40. In
the paraelectric phase, the susceptibility always tends asymptotically to χb(B) away from the
interface plane (see figures 4(a), 4(b), and 4(c)). It is interesting to note that the difference
between a superlattice with a small period and one with a large period is clearer in the
ferroelectric plane. In the three cases, the susceptibility of the ferroelectric is much higher than
that of the paraelectric side and even higher than its corresponding bulk value for (FE)5/(PE)5
and (FE)8/(PE)8. The susceptibility of the paraelectric side does not change much with the
variation of the period and tends asymptotically to χb(B) away from the interface. This
indicates that the interface plane has a stronger influence on ferroelectric planes than on
paraelectric planes.

The period dependence of the longitudinal susceptibility versus the number of planes
in each sublattice (La = Lb) is shown in figure 5(a) (room temperature) and figure 5(b)
(T = 500 K). Figure 5(a) shows that at room temperature, there is a peak around (FE)4/(PE)4.
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Figure 5. (a) The period dependence of the susceptibility at room temperature. (b) The period
dependence of the susceptibility at T = 500 K.

This result has been observed experimentally for the BaTiO3/SrTiO3 superlattice recently
[14]. Wang and Smith [22] have observed this peak around (FE)2/(PE)2; this disagreement
with our results can be attributed to the fact that the authors used for their study the mean-
field approximation. By recalling the Curie temperature from figure 2, we can easily find
that the Curie temperature of (FE)4/(PE)4 is room temperature. This agreement between the
behaviour of the susceptibility (figure 5(a)) and the phase diagram (figure 2) was not shown
by Wang and Smith [22]. The peak position of the susceptibility will shift to a large period if
the measurement is done at higher temperature. These trends were consistently obtained from
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our calculations at different temperatures less than the bulk ferroelectric Curie temperature,
but were not presented in the figures. It is well known that the susceptibilities of BaTiO3

and SrTiO3 increase with increasing film thickness [34–39]. Considering the behaviour of the
susceptibility of the superlattice BaTiO3/SrTiO3, the structure of the system and the stress
caused at the interface between the BaTiO3 and SrTiO3 planes, apparently, play an important
role in the enhancement of the susceptibility. When the temperature is higher than the bulk
ferroelectric Curie temperature, the susceptibility increases with the increase of the period; see
figure 5(b).

4. Conclusions

We have studied the phase transition properties of a ferroelectric superlattice described by the
Ising model in a transverse field using the effective-field theory with a probability distribution
technique that accounts for the self-spin correlation functions. An independent interface plane
has been assumed and the parameters that imitate the BaTiO3/SrTiO3 structure have been used
in our calculation. We have found that the Curie temperature depends upon the number of
ferroelectric planes very strongly, and that the paraelectric plane plays a relatively weak role
in the behaviour of the Curie temperature. We have also shown that the dielectric properties
of the superlattices are considerably different from those of SrTiO3 and BaTiO3 single-phase
films. This indicates that the interface planes have a stronger influence on the superlattice and
especially on the ferroelectric planes. Even though a lot of assumptions have been made in our
calculations, the basic features observed experimentally have been reproduced from our model;
there is a peak around (FE)4/(PE)4 in the curve of the period dependence of the susceptibility.
Wang and Smith [22] have observed this peak around (FE)2/(PE)2; this disagreement with
our results can be attributed to the fact that the authors used for their study the mean-field
approximation.

The formation of dielectric and ferroelectric superlattices forms a promising approach for
creating new super-ferroelectric materials and for the study of the mechanism giving rise to
ferroelectricity.
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Appendix A. Calculation of the plane longitudinal susceptibilities

Taking into account the applied longitudinal magnetic field h, the plane longitudinal magnet-
izations take the forms

m1,z = 1

2N+2N0

N∑
i1=0

N0∑
i2=0

N0∑
i3=0

CNi1 C
N0
i2
C
N0
i3
(1 − 2m1,z)

i1(1 + 2m1,z)
N−i1(1 − 2mL,z)

i2

× (1 + 2mL,z)
N0−i2(1 − 2m2,z)

i3(1 + 2m2,z)
N0−i3

× F

[
1

2
(Jaa(N − 2i1) + JI(N0 − 2i2) + Jaa(N0 − 2i3)) + h,�A

]
(A.1)



Phase transition properties of a spin-1/2 Ising superlattice 807

mn,z = 1

2N+2N0

N∑
i1=0

N0∑
i2=0

N0∑
i3=0

CNi1 C
N0
i2
C
N0
i3
(1 − 2mn,z)

i1(1 + 2mn,z)
N−i1

× (1 − 2mn−1,z)
i2(1 + 2mn−1,z)

N0−i2(1 − 2mn+1,z)
i3(1 + 2mn+1,z)

N0−i3

× F [yn + h,�n] (A.2)

mL,z = 1

2N+2N0

N∑
i1=0

N0∑
i2=0

N0∑
i3=0

CNi1 C
N0
i2
C
N0
i3
(1 − 2mL,z)

i1(1 + 2mL,z)
N−i1

× (1 − 2m1,z)
i2(1 + 2m1,z)

N0−i2(1 − 2mL−1,z)
i3(1 + 2mL−1,z)

N0−i3

× F

[
1

2
(JI(N − 2i1) + JI(N0 − 2i2) + JI(N0 − 2i3)) + h,�I

]
(A.3)

where

yn = 1

2

[
Jn,n(N − 2i1) + Jn,n−1(N0 − 2i2) + Jn,n+1(N0 − 2i3)

]
. (A.4)

By differentiating the equations of the plane longitudinal magnetizations (equations (A.1)–
(A.3)) with respect to h and taking the limit when h goes to zero, we get the following set of
equations:

∂m1,z

∂h

∣∣∣∣
h=0

= A1,1
∂m1,z

∂h

∣∣∣∣
h=0

+ A1,2
∂m2,z

∂h

∣∣∣∣
h=0

+ A1,L
∂mL,z

∂h

∣∣∣∣
h=0

+ B1 (A.5)

∂mn,z

∂h

∣∣∣∣
h=0

= An,n−1
∂mn−1,z

∂h

∣∣∣∣
h=0

+ An,n
∂mn,z

∂h

∣∣∣∣
h=0

+ An,n+1
∂mn+1,z

∂h

∣∣∣∣
h=0

+ Bn (A.6)

∂mL,z

∂h

∣∣∣∣
h=0

= AL,L−1
∂mL−1,z

∂h

∣∣∣∣
h=0

+ AL,L
∂mL,z

∂h

∣∣∣∣
h=0

+ AL,1
∂m1,z

∂h

∣∣∣∣
h=0

+ BL. (A.7)

The sets of equations (A.5)–(A.7) yield

Cn,n−1χn−1,z + Cn,nχn,z + Cn,n+1χn+1,z = Bn for 1 � n � L (A.8)

with

Cn,n−1 = −An,n−1

Cn,n = 1 − An,n−1

Cn,n+1 = −An,n+1.

(A.9)

Equation (A.8) is a set of L equations from which the plane longitudinal susceptibilities are
obtained. The expressions for the coefficients are

An,n−1 = 1

2N+2N0

N∑
i1=0

N0∑
i2=0

N0∑
i3=0

i2∑
i=0

N0−i2∑
j=0

CNi1 C
N0
i2
C
N0
i3
C
i2
i C

N0−i2
j (−1)i2i+j (i + j)

× (mn−1,z)
i+j−1(1 − 2mn,z)

i1(1 + 2mn,z)
N−i1(1 − 2mn+1,z)

i3

× (1 + 2mn+1,z)
N0−i3F [yn,�n] (A.10)

An,n = 1

2N+2N0

N∑
i1=0

N0∑
i2=0

N0∑
i3=0

i1∑
i=0

N−i1∑
j=0

CNi1 C
N0
i2
C
N0
i3
C
i1
i C

N−i1
j (−1)i2i+j (i + j)

× (mn,z)
i+j−1(1 − 2mn−1,z)

i2(1 + 2mn−1,z)
N0−i2(1 − 2mn+1,z)

i3

× (1 + 2mn+1,z)
N0−i3F [yn,�n] (A.11)
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An,n+1 = 1

2N+2N0

N∑
i1=0

N0∑
i2=0

N0∑
i3=0

i3∑
i=0

N0−i3∑
j=0

CNi1 C
N0
i2
C
N0
i3
C
i3
i C

N0−i3
j (−1)i2i+j (i + j)(mn+1,z)

i+j−1

× (1 − 2mn,z)
i1(1 + 2mn,z)

N−i1(1 − 2mn−1,z)
i2(1 + 2mn−1,z)

N0−i2

× F [yn,�n] (A.12)

B1 = 1

2N+2N0

N∑
i1=0

N0∑
i2=0

N0∑
i3=0

CNi1 C
N0
i2
C
N0
i3
(1 − 2m1,z)

i1(1 + 2m1,z)
N−i1(1 − 2mL,z)

i2

× (1 + 2mL,z)
N0−i2(1 − 2m2,z)

i3(1 + 2m2,z)
N0−i3

× g

[
1

2
(Jaa(N − 2i1) + JI(N0 − 2i2) + Jaa(N0 − 2i3)),�A

]
(A.13)

Bn = 1

2N+2N0

N∑
i1=0

N0∑
i2=0

N0∑
i3=0

CNi1 C
N0
i2
C
N0
i3
(1 − 2mn,z)

i1(1 + 2mn,z)
N−i1

× (1 − 2mn−1,z)
i2(1 + 2mn−1,z)

N0−i2(1 − 2mn+1,z)
i3(1 + 2mn+1,z)

N0−i3

× g [yn,�n] (A.14)

BL = 1

2N+2N0

N∑
i1=0

N0∑
i2=0

N0∑
i3=0

CNi1 C
N0
i2
C
N0
i3
(1 − 2mL,z)

i1(1 + 2mL,z)
N−i1

× (1 − 2m1,z)
i2(1 + 2m1,z)

N0−i2(1 − 2mL−1,z)
i3(1 + 2mL−1,z)

N0−i3

× g

[
1

2
(JI(N − 2i1) + JI(N0 − 2i2) + JI(N0 − 2i3)),�I

]
(A.15)

where

yn = 1

2

[
Jn,n(N − 2i1) + Jn,n−1(N0 − 2i2) + Jn,n+1(N0 − 2i3)

]
(A.16)

and

g[y,�] = ∂f (y,�)

∂h

∣∣∣∣
h=0

= 1

2

{
�2

(y2 +�2)3/2
tanh

[
1

2
β(y2 +�2)1/2

]

+
β

2

y2

(y2 +�2)

{
1 − tanh2

[
1

2
β(y2 +�2)1/2

]}}
. (A.17)
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